Intervention of astaxanthin against cyclophosphamide-induced oxidative stress and DNA damage: a study in mice.
Tripathi DN, Jena GB.

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.

Abstract
Astaxanthin, a natural and nutritional red carotenoid pigment, is used as a dietary supplement. The intention of the present study was to investigate the beneficial effects of dietary pigment astaxanthin, against cyclophosphamide-induced oxidative stress and DNA damage. The end points of evaluation of the study included: (a) malondialdehyde, glutathione and superoxide dismutase concentration in liver to detect oxidative stress; (b) normal and modified alkaline comet assays (the latter includes lesion-specific enzymes formamidopyrimidine-DNA glycosylase and endonuclease-III) to detect normal and oxidative stress-induced DNA damage by cyclophosphamide in the mouse bone marrow and the peripheral blood lymphocytes. In addition, micronucleus assay and chromosomal aberration test capable of detecting the DNA damage were also carried out in peripheral blood and bone marrow of mice. Cyclophosphamide (100 mg/kg intra-peritoneal) treatment led to significant increase in liver malondialdehyde and decreased the antioxidant enzymes glutathione and superoxide dismutase. Further, cyclophosphamide also significantly increased the DNA damage as observed from normal and modified comet assays as well as micronucleus and chromosomal aberration assay. Pre-treatment with astaxanthin (12.5, 25 and 50 mg/kg/day for 5 days per oral) resulted in the restoration of oxidative stress markers such as malondialdehyde, glutathione and superoxide dismutase in liver. The amelioration of oxidative stress with astaxanthin pre-treatment correlated well with the decreased DNA damage as evident from normal and modified alkaline comet assays of bone marrow cells and peripheral blood lymphocytes. Further astaxanthin pre-treatment also reduced the frequency of chromosomal breakage and micronucleus formation in the mouse bone marrow cells and peripheral blood reticulocytes. It is thus concluded that pre-treatment with astaxanthin attenuates cyclophosphamide-induced oxidative stress and subsequent DNA damage in mice and it can be used as a chemoprotective agent against the toxicity of anticancer drug cyclophosphamide.

PMID: 19539803 [PubMed - indexed for MEDLINE]